Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2011
versions View all 3 versions

Valine 1532 of human BRC repeat 4 plays an important role in the interaction between BRCA2 and RAD51

Authors: Ochiai, Kazuhiko; Yoshikawa, Yasunaga; Yoshimatsu, Kumiko; Oonuma, Toshina; Tomioka, Yukiko; Takeda, Eichi; Arikawa, Jiro; +4 Authors

Valine 1532 of human BRC repeat 4 plays an important role in the interaction between BRCA2 and RAD51

Abstract

The breast cancer susceptibility protein BRCA2 is essential for recombinational DNA repair. BRCA2 specifically binds to RAD51 via eight BRC repeat motifs and delivers RAD51 to double-stranded DNA breaks. In this study, a mammalian two-hybrid assay and competitive ELISA showed that the interaction between BRC repeat 4 (BRC4) and RAD51 was strengthened by the substitution of a single BRC4 amino acid from valine to isoleucine (V1532I). However, the cancer-associated V1532F mutant exhibited very weak interaction with RAD51. This study used a comparative analysis of BRC4 between animal species to identify V1532 as an important residue that interacts with RAD51.

Keywords

BRCA2 Protein, BRC repeat, Valine, BRCA2, Canine, Neoplasm Proteins, Amino Acid Substitution, Two-Hybrid System Techniques, 649, RAD51, Animals, Humans, Mutant Proteins, Rad51 Recombinase, Homologous recombination, Protein Binding, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research