Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Carboxyl Ester Lipase Cofractionates with Scavenger Receptor BI in Hepatocyte Lipid Rafts and Enhances Selective Uptake and Hydrolysis of Cholesteryl Esters from HDL3

Authors: Lisa M, Camarota; Jamie M, Chapman; David Y, Hui; Philip N, Howles;

Carboxyl Ester Lipase Cofractionates with Scavenger Receptor BI in Hepatocyte Lipid Rafts and Enhances Selective Uptake and Hydrolysis of Cholesteryl Esters from HDL3

Abstract

Cholesteryl esters are selectively removed from high density lipoproteins by hepatocytes and steroidogenic cells through a process mediated by scavenger receptor BI. In the liver this cholesterol is secreted into bile, primarily as free cholesterol. Previous work showed that carboxyl ester lipase enhanced selective uptake of cholesteryl ether from high density lipoprotein by an unknown mechanism. Experiments were performed to determine whether carboxyl ester lipase plays a role in scavenger receptor BI-mediated selective uptake. When added to cultures of HepG2 cells, carboxyl ester lipase cofractionated with scavenger receptor BI and [(3)H]cholesteryl ether-labeled high density lipoprotein in lipid raft fractions of cell homogenates. Confocal microscopy of immunostained carboxyl ester lipase and scavenger receptor BI showed a close association of these proteins in HepG2 cells. The enzyme and receptor also cofractionated from homogenates of mouse liver using two different fractionation methods. Antibodies that block scavenger receptor BI function prevented carboxyl ester lipase stimulation of selective uptake in primary hepatocytes from carboxyl ester lipase knockout mice. Heparin blockage of cell-surface proteoglycans also prevented carboxyl ester lipase stimulation of cholesteryl ester uptake by HepG2 cells. Inhibition of carboxyl ester lipase activity in HepG2 cells reduced hydrolysis of high density lipoprotein-cholesteryl esters approximately 40%. In vivo, hydrolysis was similarly reduced in lipid rafts from the livers of carboxyl ester lipase-null mice compared with control animals. Primary hepatocytes from these mice yielded similar results. The data suggest that carboxyl ester lipase plays a physiological role in hepatic selective uptake and metabolism of high density lipoprotein cholesteryl esters by direct and indirect interactions with the scavenger receptor BI pathway.

Keywords

Mice, Knockout, Receptors, Scavenger, Taurocholic Acid, Taurodeoxycholic Acid, Heparin, Hydrolysis, Cell Membrane, Endosomes, Chemical Fractionation, Carboxylesterase, Mice, Membrane Microdomains, Liver, Cell Line, Tumor, Hepatocytes, Animals, Humans, Cholesterol Esters, Receptors, Immunologic, Lipoproteins, HDL

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
gold