Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Human Genetics
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Micro-exons of the cardiac myosin binding protein C gene: flanking introns contain a disproportionately large number of hypertrophic cardiomyopathy mutations

Authors: Rune, Frank-Hansen; Stephen P, Page; Petros, Syrris; William J, McKenna; Michael, Christiansen; Paal Skytt, Andersen;

Micro-exons of the cardiac myosin binding protein C gene: flanking introns contain a disproportionately large number of hypertrophic cardiomyopathy mutations

Abstract

Hypertrophic cardiomyopathy is primarily caused by mutations in genes encoding cardiac sarcomere proteins. Large screening studies identify mutations in 35-65% of the diagnosed patients and 15-30% of these are discovered within the MYBPC3 gene encoding the cardiac myosin binding protein C. The aim of this study is to determine whether intronic variation flanking the three micro-exons in MYBPC3 is disease-causing. Two hundred and fifty unrelated patients with hypertrophic cardiomyopathy were genotyped in MYBPC3, using automated single-strand conformation polymorphism, and sequenced for confirmation. Mutations located in the flanking introns of the MYBPC3 micro-exons were examined using in silico methods. Ectopic expression of mRNA in blood leukocytes in the respective patients was examined using reverse transcription-PCR. A total of seven mutations were discovered in the introns flanking the two micro-exons 10 and 14, but none were found in introns flanking exon 11. Functional studies together with co-segregation analysis indicate that four mutations are associated with HCM, in the respective patients. All four mutations result in premature termination codons, which suggests that haploinsufficiency is a pathogenic mechanism of this type of mutation. It is demonstrated that the use of in silico methods together with RNA studies on peripheral blood leukocytes is a useful tool to evaluate the potential effects of mutations on pre-mRNA splicing.

Keywords

Adult, Male, Myocardium, Exons, Cardiomyopathy, Hypertrophic, Haploidy, Middle Aged, Polymorphism, Single Nucleotide, Introns, Pedigree, Codon, Nonsense, Codon, Terminator, Humans, Point Mutation, Female, RNA Splice Sites, Carrier Proteins, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Average
bronze