Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEssaysarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
BioEssays
Article . 2004
versions View all 2 versions

Adding to the ends: what makes telomerase processive and how important is it?

Authors: Neal F, Lue;

Adding to the ends: what makes telomerase processive and how important is it?

Abstract

AbstractTelomerase is a cellular reverse transcriptase responsible for telomere maintenance in most organisms. It does so by adding telomere repeats onto pre‐existing ends using an integral RNA component as template. Compared to “prototypical” reverse transcriptases, telomerase is unique in being able to repetitively copy a short templating RNA segment, thus adding multiple copies of the repeat to the DNA substrate following a single binding event. This uniquely processive property hints at the intricate conformational alterations that the enzyme must choreograph during its reaction cycles. Recent studies have identified distinct structural elements within both the RNA and protein components of telomerase that modulate enzyme processivity. Pharmacological and genetic analysis suggest that telomerase processivity is a significant determinant of telomere length. Because telomere maintenance and the lack thereof have been linked to tumor progression and aging, further investigation of telomerase processivity may lead to novel medical intervention strategies. BioEssays 26:955–962, 2004. © 2004 Wiley Periodicals, Inc.

Related Organizations
Keywords

Base Sequence, Protein Conformation, Molecular Sequence Data, DNA, Saccharomyces cerevisiae, Telomere, Models, Biological, Disease Progression, Animals, Humans, RNA, Dimerization, Telomerase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%