Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The calpain small subunit regulates cell-substrate mechanical interactions during fibroblast migration

Authors: Vishnu V, Undyala; Micah, Dembo; Katherine, Cembrola; Benjamin J, Perrin; Anna, Huttenlocher; John S, Elce; Peter A, Greer; +2 Authors

The calpain small subunit regulates cell-substrate mechanical interactions during fibroblast migration

Abstract

Cell migration involves the dynamic formation and release of cell-substrate adhesions, where the exertion and detection of mechanical forces take place. Members of the calpain family of calcium-dependent proteases are believed to have a central role in these processes, possibly through the regulation of focal adhesion dynamics. The ubiquitous calpains, calpain 1 (μ-calpain) and calpain 2 (m-calpain), are heterodimers consisting of large catalytic subunits encoded by the Capn1 and Capn2 genes, respectively, and the small regulatory subunit encoded by Capn4. We have examined the role of the calpain regulatory small subunit in traction force production and mechanosensing during cell migration. Capn4-deficient or rescued cells were plated on flexible polyacrylamide substrates, for both the detection of traction forces and the application of mechanical stimuli. The total force output of Capn4-deficient cells was ∼75% lower than that of rescued cells and the forces were more randomly distributed and less dynamic in Capn4-deficient cells than in rescued cells. Furthermore, Capn4-deficient cells were less adhesive than wild-type cells and they also failed to respond to mechanical stimulations by pushing or pulling the flexible substrate, or by engaging dorsal receptors to the extracellular matrix. Surprisingly, fibroblasts deficient in calpain 1 or calpain 2 upon siRNA-mediated knockdown of Capn1 or Capn2, respectively, did not show the same defects in force production or adhesion, although they also failed to respond to mechanical stimulation. Interestingly, stress fibers were aberrant and also contained fewer colocalised vinculin-containing adhesions in Capn4-deficient cells than Capn1- and Capn2-knockdown cells. Together, these results suggest that the calpain small subunit plays an important role in the production of mechanical forces and in mediating mechanosensing during fibroblast migration. Furthermore, the Capn4 gene product might perform functions secondary to, or independent of, its role as a regulatory subunit for calpain 1 and calpain 2.

Keywords

Calpain, Fibroblasts, Models, Biological, Extracellular Matrix, Mice, Gene Expression Regulation, Cell Movement, Cell Adhesion, NIH 3T3 Cells, Animals, Gene Silencing, RNA, Small Interfering, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Average
bronze