Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The FASEB Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Novel guanine nucleotide exchange factor GEFmeso of Drosophila melanogaster interacts with Ral and Rho GTPase Cdc42

Authors: Stephen, Blanke; Herbert, Jäckle;

Novel guanine nucleotide exchange factor GEFmeso of Drosophila melanogaster interacts with Ral and Rho GTPase Cdc42

Abstract

ABSTRACT This article reports the identification and characterization of a DBL‐like guanine nucleotide exchange factor (GEF) in Drosophila , called GEFmeso, as a novel binding target of the Ras‐like GTPase Ral. Previous studies suggested that some aspects of Ral activity, which is involved in multiple cellular processes, are mediated through regulation of Rho GTPases. Here we show in vitro association of GEFmeso with the GTP‐bound active form of Ral and the nucleotide‐free form of the Rho GTPase Cdc42. GEFmeso fails to bind to other Rho GTPases, showing that Cdc42 is a specific interaction partner of this GEF. Unlike Ral and Cdc42, which are ubiquitously expressed, GEFmeso exerts distinct spatio‐temporal expression patterns during embryonic development, suggesting a tissue‐restricted function of the GEF in vivo. Based on previous observations that mutations in Cdc42 or overexpression of mutant alleles of Cdc42 lead to distinct effects on wing development, the effects of overexpression of dominant‐negative and activated versions of Ral on wing development were analyzed. In addition, GEFmeso overexpression studies as well as RNAi experiments were performed. The results suggest that Ral, GEFmeso and Cdc42 act in the same developmental pathway and that GEFmeso mediates activation of Cdc42 in response to activated Ral in the context of Drosophila wing development.‐Blanke, S., Jäckle, H. Novel guanine nucleotide exchange factor GEFmeso of Drosophila melanogaster interacts with Ral and Rho GTPase Cdc42. FASEB J. 20, 683–691 (2005)

Keywords

Drosophila melanogaster, GTP-Binding Proteins, Animals, Chromosome Mapping, Drosophila Proteins, Gene Expression Regulation, Developmental, Guanine Nucleotide Exchange Factors, Wings, Animal, ral GTP-Binding Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average