Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Epidermal Growth Factor Signaling and Mitogenesis inPlcg1Null Mouse Embryonic Fibroblasts

Authors: Q S, Ji; S, Ermini; J, Baulida; F L, Sun; G, Carpenter;

Epidermal Growth Factor Signaling and Mitogenesis inPlcg1Null Mouse Embryonic Fibroblasts

Abstract

Gene targeting techniques and early mouse embryos have been used to produce immortalized fibroblasts genetically deficient in phospholipase C (PLC)-γ1, a ubiquitous tyrosine kinase substrate.Plcg1−/−embryos die at embryonic day 9; however, cells derived from these embryos proliferate as well as cells from Plcg1+/+embryos. The null cells do grow to a higher saturation density in serum-containing media, as their capacity to spread out is decreased compared with that of wild-type cells. In terms of epidermal growth factor receptor activation and internalization, or growth factor induction of mitogen-activated protein kinase, c-fos, or DNA synthesis in quiescent cells, PLcg1−/−cells respond equivalently to PLcg1+/+cells. Also, null cells are able to migrate effectively in a wounded monolayer. Therefore, immortalized fibroblasts do not require PLC-γ1 for many responses to growth factors.

Related Organizations
Keywords

Epidermal Growth Factor, Phospholipase C gamma, Fibroblasts, Embryo, Mammalian, ErbB Receptors, Isoenzymes, Mice, Cell Movement, Type C Phospholipases, Animals, Phosphorylation, Cell Division, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
bronze