Machine Learning Enabled Preamble Collision Resolution in Distributed Massive MIMO
Machine Learning Enabled Preamble Collision Resolution in Distributed Massive MIMO
Preamble collision is a bottleneck that impairs the performance of random access (RA) user equipment (UE) in grant-free RA (GFRA). In this paper, by leveraging distributed massive multiple input multiple output (mMIMO) together with machine learning, a novel machine learning based framework solution is proposed to address the preamble collision problem in GFRA. The key idea is to identify and employ the neighboring access points (APs) of a collided RA UE for its data decoding rather than all the APs, so that the mutual interference among collided RA UEs can be effectively mitigated. To this end, we first design a tailored deep neural network (DNN) to enable the preamble multiplicity estimation in GFRA, where an energy detection (ED) method is also proposed for performance comparison. With the estimated preamble multiplicity, we then propose a K-means AP clustering algorithm to cluster the neighboring APs of collided RA UEs and organize each AP cluster to decode the received data individually. Simulation results show that a decent performance of preamble multiplicity estimation in terms of accuracy and reliability can be achieved by the proposed DNN, and confirm that the proposed schemes are effective in preamble collision resolution in GFRA, which are able to achieve a near-optimal performance in terms of uplink achievable rate per collided RA UE, and offer significant performance improvement over traditional schemes.<br>
- Wuhan University of Technology China (People's Republic of)
- Deakin University Australia
- Huazhong University of Science and Technology China (People's Republic of)
- Wuhan Polytechnic University China (People's Republic of)
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
11 Research products, page 1 of 2
- 2022IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2001IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
