Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2009 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2009
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions

Confinement effects on the kinetics and thermodynamics of protein dimerization

Authors: Peter G. Wolynes; Yaakov Levy; Emmanuel Trizac; Weixin Xu; Wei Wang;

Confinement effects on the kinetics and thermodynamics of protein dimerization

Abstract

In the cell, protein complexes form by relying on specific interactions between their monomers. Excluded volume effects due to molecular crowding would lead to correlations between molecules even without specific interactions. What is the interplay of these effects in the crowded cellular environment? We study dimerization of a model homodimer when the mondimers are free and when they are tethered to each other. We consider a structured environment: Two monomers first diffuse into a cavity of size L and then fold and bind within the cavity. The folding and binding are simulated by using molecular dynamics based on a simplified topology based model. The confinement in the cell is described by an effective molecular concentration C ∼ L −3 . A two-state coupled folding and binding behavior is found. We show the maximal rate of dimerization occurred at an effective molecular concentration C op ≃ 1 mM, which is a relevant cellular concentration. In contrast, for tethered chains the rate keeps at a plateau when C < C op but then decreases sharply when C > C op . For both the free and tethered cases, the simulated variation of the rate of dimerization and thermodynamic stability with effective molecular concentration agrees well with experimental observations. In addition, a theoretical argument for the effects of confinement on dimerization is also made.

Related Organizations
Keywords

Models, Molecular, Protein Folding, Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Diffusion, Kinetics, Thermodynamics, Soft Condensed Matter (cond-mat.soft), Computer Simulation, Protein Multimerization, Condensed Matter - Statistical Mechanics, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
Green
bronze