Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mucosal Immunologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mucosal Immunology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mucosal Immunology
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

T helper cell IL-4 drives intestinal Th2 priming to oral peanut antigen, under the control of OX40L and independent of innate-like lymphocytes

Authors: Ali A. Ashkar; Susanna Goncharova; Alba Llop-Guevara; Jonathan L. Bramson; Nicole G. Barra; Alison A. Humbles; H Van Seggelen; +11 Authors

T helper cell IL-4 drives intestinal Th2 priming to oral peanut antigen, under the control of OX40L and independent of innate-like lymphocytes

Abstract

Intestinal T helper type 2 (Th2) immunity in food allergy results in IgG1 and IgE production, and antigen re-exposure elicits responses such as anaphylaxis and eosinophilic inflammation. Although interleukin-4 (IL-4) is critically required for allergic sensitization, the source and control of IL-4 during the initiation of Th2 immunity in vivo remains unclear. Non-intestinal and non-food allergy systems have suggested that natural killer-like T (NKT) or γδ T-cell innate lymphocytes can supply the IL-4 required to induce Th2 polarization. Group 2 innate lymphoid cells (ILCs) are a novel IL-4-competent population, but their contribution to initiating adaptive Th2 immunity is unclear. There are also reports of IL-4-independent Th2 responses. Here, we show that IL-4-dependent peanut allergic Th2 responses are completely intact in NKT-deficient, γδ T-deficient or ILC-deficient mice, including antigen-specific IgG1/IgE production, anaphylaxis, and cytokine production. Instead, IL-4 solely from CD4(+) Th cells induces full Th2 immunity. Further, CD4(+) Th cell production of IL-4 in vivo is dependent on OX40L, a costimulatory molecule on dendritic cells (DCs) required for intestinal allergic priming. However, both Th2 cells and ILCs orchestrated IL-13-dependent eosinophilic inflammation. Thus, intestinal Th2 priming is initiated by an autocrine/paracrine acting CD4(+) Th cell-intrinsic IL-4 program that is controlled by DC OX40L, and not by NKT, γδ T, or ILC cells.

Related Organizations
Keywords

Mice, Knockout, Interleukin-13, Membrane Glycoproteins, Arachis, OX40 Ligand, Receptors, Antigen, T-Cell, gamma-delta, Allergens, Immunoglobulin E, Immunity, Innate, Eosinophils, Intestines, Mice, Th2 Cells, Immunoglobulin G, Tumor Necrosis Factors, Animals, Peanut Hypersensitivity, Interleukin-4

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 1%
Top 10%
Top 10%
bronze