Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTEOMICSarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
PROTEOMICS
Article . 2009
versions View all 2 versions

Proteomic identification of differentially expressed plasma membrane proteins in renal cell carcinoma by stable isotope labelling of a von Hippel‐Lindau transfectant cell line model

Authors: Vassilis, Aggelis; Rachel A, Craven; Jianhe, Peng; Patricia, Harnden; David A, Cairns; Eamonn R, Maher; Robert, Tonge; +2 Authors

Proteomic identification of differentially expressed plasma membrane proteins in renal cell carcinoma by stable isotope labelling of a von Hippel‐Lindau transfectant cell line model

Abstract

AbstractThe von Hippel‐Lindau (VHL) tumour suppressor gene plays a central role in development of clear cell renal cell carcinoma (RCC). Using a cell line pair generated from the VHL‐defective RCC cell line UMRC2 by transfection with vector control or VHL (−/+VHL) and stable isotope labelling with amino acids in cell culture (SILAC) followed by enrichment of plasma membrane proteins by cell surface biotinylation/avidin‐affinity chromatography and analysis by GeLC‐MS/MS, VHL‐associated changes in plasma membrane proteins were analysed. Comparative analysis of ‐/+VHL cells identified 19 differentially expressed proteins which were confirmed by reciprocal SILAC labelling. These included several proteins previously reported to be VHL targets, such as transferrin receptor 1 and the α3 and β1 integrin subunits and novel findings including upregulation of CD166 and CD147 in VHL‐defective cells. Western blotting confirmed these changes and also revealed VHL‐dependent alterations in protein form for CD147 and CD166, which in the case of CD166 was shown to be due to differential glycosylation. Analysis of patient‐matched normal and malignant renal tissues confirmed these differences were also present in vivo in a subset of clear cell RCCs. These results illustrate the potential of this approach for identifying VHL‐dependent proteins that may be important in tumorigenesis.

Keywords

Fetal Proteins, Proteomics, Glycosylation, Cell Adhesion Molecules, Neuronal, Membrane Proteins, Transfection, Kidney Neoplasms, Mass Spectrometry, Up-Regulation, Antigens, CD, Von Hippel-Lindau Tumor Suppressor Protein, Cell Line, Tumor, Isotope Labeling, Basigin, Humans, Carcinoma, Renal Cell, Biomarkers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%