Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Genetic ablation of Rac1 in cartilage results in chondrodysplasia

Authors: Wang, Guoyan; Woods, Anita; Agoston, Hanga; Ulici, Veronica; Glogauer, Michael; Beier, Frank;

Genetic ablation of Rac1 in cartilage results in chondrodysplasia

Abstract

Small GTPases of the Rho family have been implicated in the regulation of many intracellular processes. However, their tissue-specific roles in mammalian growth and development in vivo remain largely unknown. Here we describe the effects of cartilage-specific inactivation of the Rac1 gene in mice. Mice carrying this mutation show increased lethality, skeletal deformities, severe kyphosis and dwarfism. Rac1-deficient growth plates are disorganized and hypocellular, with chondrocytes of abnormal shape and size. Rac1-deficient chondrocytes also display reduced adhesion and spreading on collagen II and fibronectin as well as altered organization of the actin cytoskeleton, suggesting that Rac1 is required for normal cell-extracellular matrix interactions in cartilage. This phenotype is accompanied by reduced proliferation, increased apoptosis and deregulated expression of the cell cycle genes cyclin D1 and p57 in vivo. Moreover, phosphorylation of p38 MAP kinases is greatly reduced and expression of a key regulator of cartilage development, Indian hedgehog, is increased in mutant mice. In summary, these data identify a novel, essential and tissue-specific role of Rac1 in skeletal development and demonstrate that Rac1 deficiency affects numerous regulatory pathways in cartilage.

Keywords

rac1 GTP-Binding Protein, Chondrodysplasia Punctata, Knockout, Skeletal development, Bone and Bones, Cre/lox, Mice, Chondrocytes, Cell Adhesion, Animals, Genetic Predisposition to Disease, Tissue Distribution, Phosphorylation, Molecular Biology, Mice, Knockout, Bone Development, Models, Genetic, Neuropeptides, Endochondral ossification, Cell Biology, rac GTP-Binding Proteins, Disease Models, Animal, Cartilage, Growth plate, Rac1, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
hybrid