Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 1993
versions View all 2 versions

Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader–Willi syndrome region

Authors: Uta Francke; Tayfun Ozcelik; Nancy A. Jenkins; Neal G. Copeland; Camilynn I. Brannan; Martha L. Reed; Stuart E. Leff;

Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader–Willi syndrome region

Abstract

Prader-Willi syndrome (PWS) is associated with paternal gene deficiencies in human chromosome 15q11-13, suggesting that PWS is caused by a deficiency in one or more maternally imprinted genes. We have now mapped a gene, Snrpn, encoding a brain-enriched small nuclear ribonucleoprotein (snRNP)-associated polypeptide SmN, to mouse chromosome 7 in a region of homology with human chromosome 15q11-13 and demonstrated that Snrpn is a maternally imprinted gene in mouse. These studies, in combination with the accompanying human mapping studies showing that SNRPN maps in the Prader-Willi critical region, identify SNRPN as a candidate gene involved in PWS and suggest that PWS may be caused, in part, by defects in mRNA processing.

Related Organizations
Keywords

Male, Chromosomes, Human, Pair 15, Base Sequence, Models, Genetic, Genetic Linkage, Molecular Sequence Data, Chromosome Mapping, DNA, Ribonucleoproteins, Small Nuclear, Autoantigens, Mice, Inbred C57BL, Muridae, Mice, Animals, Humans, Female, Amino Acid Sequence, RNA Processing, Post-Transcriptional, Prader-Willi Syndrome, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    270
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
270
Top 10%
Top 1%
Top 0.1%