Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Crystal Structure of HslUV Complexed with a Vinyl Sulfone Inhibitor: Corroboration of a Proposed Mechanism of Allosteric Activation of HslV by HslU

Authors: Sousa, M; Kessler, B; Overkleeft, H; McKay, D;

Crystal Structure of HslUV Complexed with a Vinyl Sulfone Inhibitor: Corroboration of a Proposed Mechanism of Allosteric Activation of HslV by HslU

Abstract

On the basis of the structure of a HslUV complex, a mechanism of allosteric activation of the HslV protease, wherein binding of the HslU chaperone propagates a conformational change to the active site cleft of the protease, has been proposed. Here, the 3.1 A X-ray crystallographic structure of Haemophilus influenzae HslUV complexed with a vinyl sulfone inhibitor is described. The inhibitor, which reacts to form a covalent linkage to Thr1 of HslV, binds in an "antiparallel beta" manner, with hydrogen-bond interactions between the peptide backbone of the protease and that of the inhibitor, and with two leucinyl side chains of the inhibitor binding in the S1 and S3 specificity pockets of the protease. Comparison of the structure of the HslUV-inhibitor complex with that of HslV without inhibitor and in the absence of HslU reveals that backbone interactions would correctly position a substrate for cleavage in the HslUV complex, but not in the HslV protease alone, corroborating the proposed mechanism of allosteric activation. This activation mechanism differs from that of the eukaryotic proteasome, for which binding of activators opens a gated channel that controls access of substrates to the protease, but does not perturb the active site environment.

Related Organizations
Keywords

Adenosine Triphosphatases, Models, Molecular, Proteasome Endopeptidase Complex, Macromolecular Substances, Protein Conformation, Serine Endopeptidases, Crystallography, X-Ray, Haemophilus influenzae, Recombinant Proteins, Substrate Specificity, Enzyme Activation, Cysteine Endopeptidases, ATP-Dependent Proteases, Allosteric Regulation, Multienzyme Complexes, Catalytic Domain, Endopeptidases, Protease Inhibitors, Sulfones, Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
Green