Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions

Markov Modelling of Mitochondrial BAK Activation Kinetics during Apoptosis

Authors: C. Grills; D. A. Fennell; S. F. C. Shearer;

Markov Modelling of Mitochondrial BAK Activation Kinetics during Apoptosis

Abstract

The molecular mechanism underlying mitochondrial BAK activation during apoptosis remains highly controversial. Two seemingly conflicting models known as the agonism model and the derepressor model have been proposed. In the agonism model, BAK requires activator BH3 only proteins to initiate a series of events that results in cell apoptosis. In the de-repressor model the antagonism of pro-survival BCL-2 family proteins alone is sufficient for BAK activation kinetics to promote apoptosis. To gain a better understanding of the kinetic implications of these models and reconcile these opposing, but highly evidencebased theories, we have formulated Markov chain models which capture the molecular mechanisms underlying both the agonism and derepressor models. Our results indicate that both pure agonism and dissociation are mutually exclusive mechanisms capable of initiating mitochondrial apoptosis by BAK activation

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average