Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication

Authors: Olga Yurieva; Olga Yurieva; Dan Zhang; Dan Zhang; Mike O'Donnell; Mike O'Donnell; Jeff Finkelstein; +7 Authors

CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication

Abstract

Significance All cells must replicate their chromosomes prior to cell division. This process is carried out by a collection of proteins, known as the replisome, that act together to unwind the double helix and synthesize two new DNA strands complementary to the two parental strands. The details of replisome function have been worked out for bacteria but are much less well understood for eukaryotic cells. We have developed a system for studying eukaryotic replisome function in vitro using purified proteins. Using this system, we have identified a direct interaction between the component that unwinds the DNA, the CMG (Cdc45-MCM-GINS) helicase, and the component that replicates the leading strand, DNA polymerase ε, to form a large helicase–polymerase holoenzyme comprising 15 separate proteins.

Related Organizations
Keywords

DNA Replication, Saccharomyces cerevisiae Proteins, Time Factors, DNA Helicases, DNA Polymerase II, Saccharomyces cerevisiae, Models, Biological, Substrate Specificity, Protein Subunits, Chromatography, Gel, DNA, Circular, Holoenzymes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    156
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
156
Top 1%
Top 10%
Top 1%
bronze