Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental and The...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental and Therapeutic Medicine
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental and Therapeutic Medicine
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
versions View all 3 versions

Syngeneic homograft of framework regions enhances the affinity of the mouse anti‑human epidermal receptor 2 single‑chain antibody e23sFv

Authors: Ou-Yang, Qing; Ren, Jun-Lin; Yan, Bo; Feng, Jian-Nan; Yang, An-Gang; Zhao, Jing;

Syngeneic homograft of framework regions enhances the affinity of the mouse anti‑human epidermal receptor 2 single‑chain antibody e23sFv

Abstract

e23sFv is a HER2-targeted single-chain variable fragment (scFV) that was characterized as the targeting portion of a HER2-targeted tumour proapoptotic molecule in our previous study. In vitro antibody affinity maturation is a method to enhance antibody affinity either by complementarity-determining region (CDR) mutagenesis or by framework region (FR) engraftment. In the present study, the affinity of e23sFv was enhanced using two strategies. In one approach, site-directed mutations were introduced into the FRs of e23sFv (designated EMEY), and in the other approach e23sFv FRs were substituted with FRs from the most homologous screened antibodies (designated EX1 and EX2). Notably, EX1 derived from the FR engraftment strategy demonstrated a 4-fold higher affinity for HER2 compared with e23sFv and was internalized into HER2-overexpressing cells; however, EMEY and EX2 exhibited reduced affinity for HER2 and decreased internalization potential compared with EX1. The 3D structure of EX1 and the HER2-EX1 complex was acquired using molecular homology modelling and docking and the HER2 epitopes of EX1 and the molecular interaction energy of the EX1-HER2 complex were predicted. In the present study, it was demonstrated that scFv affinity improvement based on sequence alignment was feasible and effective. Moreover, the FR grafting strategy was indicated to be more effective and simple compared with site-directed mutagenesis to improve e23sFv affinity. In conclusion, it was indicated that the affinity-improved candidate EX1 may present a great potential for the diagnosis and treatment of HER2-overexpressing tumours.

Keywords

Articles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold