<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The Multifunctional Drosophila melanogaster V-ATPase Is Encoded by a Multigene Family
 Copyright policy )
 Copyright policy )pmid: 10340851
The Multifunctional Drosophila melanogaster V-ATPase Is Encoded by a Multigene Family
In animals, V-ATPases are believed to play roles in the plasma membrane, as well as endomembrane. To understand these different functions, it is necessary to adopt a genetic approach in a physiologically tractable model organism. For this purpose, Drosophila melanogaster is ideal, because of the powerful genetics associated with the organism and because of the unusually informative epithelial phenotype provided by the Malpighian tubule. Recently, the first animal "knockouts" of a V-ATPase were described in Drosophila. The resulting phenotypes have general utility for our understanding of V-ATPase function and suggest a screen for novel subunits and associated proteins. Genome project resources have accelerated our knowledge of the V-ATPase gene family size and the new Drosophila genes vhaSFD, vha100-1, vha100-2, vha100-3, vha16-2, vha16-3, vha16-4, vhaPPA1, vhaPPA2, vhaM9.7.1, and vhaM9.7.2 are described. The Drosophila V-ATPase model is thus well-suited to both forward and reverse genetic analysis of this complex multifunctional enzyme.
-  University of Glasgow United Kingdom
Proton-Translocating ATPases, Vacuolar Proton-Translocating ATPases, Drosophila melanogaster, Multigene Family, DNA Mutational Analysis, Animals
Proton-Translocating ATPases, Vacuolar Proton-Translocating ATPases, Drosophila melanogaster, Multigene Family, DNA Mutational Analysis, Animals
42 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2005IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- chevron_left 
- 1
- 2
- 3
- 4
- 5
- chevron_right 
- citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).- 51 - popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.- Top 10% - influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).- Top 10% - impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.- Top 10% 
