Time-Lapse Video Microscopy Analysis Reveals Astral Microtubule Detachment in the Yeast Spindle Pole Mutantcnm67
Time-Lapse Video Microscopy Analysis Reveals Astral Microtubule Detachment in the Yeast Spindle Pole Mutantcnm67
Saccharomyces cerevisiae cnm67Δ cells lack the spindle pole body (SPB) outer plaque, the main attachment site for astral (cytoplasmic) microtubules, leading to frequent nuclear segregation failure. We monitored dynamics of green fluorescent protein–labeled nuclei and microtubules over several cell cycles. Early nuclear migration steps such as nuclear positioning and spindle orientation were slightly affected, but late phases such as rapid oscillations and insertion of the anaphase nucleus into the bud neck were mostly absent. Analyzes of microtubule dynamics revealed normal behavior of the nuclear spindle but frequent detachment of astral microtubules after SPB separation. Concomitantly, Spc72 protein, the cytoplasmic anchor for the γ-tubulin complex, was partially lost from the SPB region with dynamics similar to those observed for microtubules. We postulate that in cnm67Δ cells Spc72–γ-tubulin complex-capped astral microtubules are released from the half-bridge upon SPB separation but fail to be anchored to the cytoplasmic side of the SPB because of the absence of an outer plaque. However, successful nuclear segregation in cnm67Δ cells can still be achieved by elongation forces of spindles that were correctly oriented before astral microtubule detachment by action of Kip3/Kar3 motors. Interestingly, the first nuclear segregation in newborn diploid cells never fails, even though astral microtubule detachment occurs.
- University of Basel Switzerland
Cell Nucleus, Centrosome, Microscopy, Video, Green Fluorescent Proteins, Cell Polarity, Saccharomyces cerevisiae, Spindle Apparatus, Diploidy, Microtubules, Luminescent Proteins, Mutation, Cell Division
Cell Nucleus, Centrosome, Microscopy, Video, Green Fluorescent Proteins, Cell Polarity, Saccharomyces cerevisiae, Spindle Apparatus, Diploidy, Microtubules, Luminescent Proteins, Mutation, Cell Division
12 Research products, page 1 of 2
- 2013IsAmongTopNSimilarDocuments
- 2003IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
