Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin

Authors: Jennifer Ehren; Pamela Maher;

Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin

Abstract

Glutathione (GSH) and GSH-associated metabolism provide the major line of defense for the protection of cells from various forms of toxic stress. GSH also plays a key role in regulating the intracellular redox environment. Thus, maintenance of GSH levels is developing into an important therapeutic objective for the treatment of a variety of diseases. Among the transcription factors that play critical roles in GSH metabolism are NF-E2-related factor 2 (Nrf2) and activating transcription factor 4 (ATF4). Thus, compounds that can upregulate these transcription factors may be particularly useful as treatment options through their effects on GSH metabolism. We previously showed that the flavonoid fisetin not only increases basal levels of GSH but also maintains GSH levels under oxidative stress conditions. However, the mechanisms underlying these effects have remained unknown until now. Here we show that fisetin rapidly increases the levels of both Nrf2 and ATF4 as well as Nrf2- and ATF4-dependent gene transcription via distinct mechanisms. Although fisetin greatly increases the stability of both Nrf2 and ATF4, only the effect on ATF4 is dependent on protein kinase activity. Using siRNA we found that ATF4, but not Nrf2, is important for fisetin's ability to increase GSH levels under basal conditions whereas both ATF4 and Nrf2 appear to cooperate to increase GSH levels under oxidative stress conditions. Based upon these results, we hypothesize that compounds able to increase GSH levels via multiple mechanisms, such as fisetin, will be particularly effective for maintaining GSH levels under a variety of different stresses.

Related Organizations
Keywords

Flavonoids, Mice, Oxidative Stress, Flavonols, NF-E2-Related Factor 2, Animals, Activating Transcription Factor 4, Glutathione, Cell Line, Transformed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%