Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
UNC Dataverse
Article . 2002
Data sources: Datacite
Current Biology
Article . 2003
versions View all 5 versions

Purification and Functional Characterization of SET8, a Nucleosomal Histone H4-Lysine 20-Specific Methyltransferase

Authors: Fang, Jia; Feng, Qin; Ketel, Carrie S.; Wang, Hengbin; Cao, Ru; Xia, Li; Erdjument-Bromage, Hediye; +3 Authors

Purification and Functional Characterization of SET8, a Nucleosomal Histone H4-Lysine 20-Specific Methyltransferase

Abstract

AbstractBackground: Covalent modifications of histone N-terminal tails play fundamental roles in regulating chromatin structure and function. Extensive studies have established that acetylation of specific lysine residues in the histone tails plays an important role in transcriptional regulation. Besides acetylation, recent studies have revealed that histone methylation also has significant effects on heterochromatin formation and transcriptional regulation. Histone methylation occurs on specific arginine and lysine residues of histones H3 and H4. Thus far, only 2 residues on histone H4 are known to be methylated. While H4-arginine 3 (H4-R3) methylation is mediated by PRMT1, the enzyme(s) responsible for H4-lysine 20 (H4-K20) methylation is not known.Results: To gain insight into the function of H4-K20 methylation, we set out to identify the enzyme responsible for this modification. We purified and cloned a novel human SET domain-containing protein, named SET8, which specifically methylates H4 at K20. SET8 is a single subunit enzyme and prefers nucleosomal substrates. We find that H4-K20 methylation occurs in a wide range of higher eukaryotic organisms and that SET8 homologs exist in C. elegans and Drosophila. We demonstrate that the Drosophila SET8 homolog has the same substrate specificity as its human counterpart. Importantly, disruption of SET8 in Drosophila reduces levels of H4-K20 methylation in vivo and results in lethality. Although H4-K20 methylation does not correlate with gene activity, it appears to be regulated during the cell cycle.Conclusions: We identified and characterized an evolutionarily conserved nucleosomal H4-K20-specific methyltransferase and demonstrated its essential role in Drosophila development.

Keywords

Binding Sites, Agricultural and Biological Sciences(all), Sequence Homology, Amino Acid, Biochemistry, Genetics and Molecular Biology(all), Lysine, Cell Cycle, Molecular Sequence Data, Acetylation, 3T3 Cells, Histone-Lysine N-Methyltransferase, DNA Methylation, Nucleosomes, Substrate Specificity, Histones, Mice, Eukaryotic Cells, Heterochromatin, Animals, Humans, Drosophila, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    293
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
293
Top 1%
Top 1%
Top 1%
hybrid