Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular and Molecul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular and Molecular Neurobiology
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Expression of Brain-Derived Neurotrophic Factor and TrkB in the Lateral Line System of Zebrafish During Development

Authors: GERMANA', Antonino; LAURA', Rosaria; MONTALBANO, Giuseppe; GUERRERA, Maria Cristina; AMATO, valentina; ZICHICHI, ROSALIA; CAMPO, Salvatore Giuseppe; +2 Authors

Expression of Brain-Derived Neurotrophic Factor and TrkB in the Lateral Line System of Zebrafish During Development

Abstract

The neuromasts of the lateral line system are regarded as a model to study the mechanisms of hearing, deafness, and ototoxicity. The neurotrophins (NTs), especially brain-derived neurotrophic factor (BDNF), and its signaling receptor TrkB are involved in the development and maintenance of neuromasts. To know the period in which the BDNF/TrkB complex has more effects in the neuromast biology, the age-related changes were studied. Normal zebrafish from 10 to 180 days post-fertilization (dpf), as well as transgenic ET4 zebrafish 10 and 20 dpf, was analyzed using qRT-PCR, western blot, and immunohistochemistry. BDNF and TrkB mRNAs followed a parallel course, peaking at 20 dpf, and thereafter progressively decreased. Specific immunoreactivity for BDNF and TrkB was found co-localized in all hairy cells of neuromasts in 20 and 30 dpf; then, the number of immunoreactive cells decreased, and by 180 dpf BDNF remains restricted to a subpopulation of hairy cells, and TrkB to a few number of sensory and non-sensory cells. At all ages examined, TrkB immunoreactivity was detected in sensory ganglia innervating the neuromasts. The present results demonstrate that there is a parallel time-related decline in the expression of BDNF and TrkB in zebrafish. Also, the patterns of cell expression suggest that autocrine/paracrine mechanisms for this NT system might occur within the neuromasts. Because TrkB in lateral line ganglia did not vary with age, their neurons are potentially capable to respond to BDNF during the entire lifespan of zebrafish.

Keywords

Aging, Brain-Derived Neurotrophic Factor, Blotting, Western, Gene Expression Regulation, Developmental, Immunohistochemistry, Fluorescence, Lateral Line System, Animals, Genetically Modified, Protein Transport, Brain-derived neurotrophic factor (BDNF); Lateral line system; Neuromast; TrkB; Zebrafish, Animals, Receptor, trkB, RNA, Messenger, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%