Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2006
versions View all 2 versions

Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain

Authors: Saurabh Kumar, Singh; Rachna, Hora; Hassan, Belrhali; Chetan E, Chitnis; Amit, Sharma;

Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain

Abstract

Molecular processes that govern pathogenic features of erythrocyte invasion and cytoadherence in malaria are reliant on Plasmodium-specific Duffy-binding-like domains (DBLs). These cysteine-rich modules recognize diverse host cell-surface receptors during pathogenesis. DBLs of parasite erythrocyte-binding proteins mediate invasion, and those from the antigenically variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) have been implicated in cytoadherence. The simian and human malarial parasites, P. knowlesi and P. vivax, invade human erythrocytes exclusively through the host DARC receptor (Duffy antigen receptor for chemokines). Here we present the crystal structure of the P. knowlesi DBL domain (Pkalpha-DBL), which binds to DARC during invasion of human erythrocytes. Pkalpha-DBL retains the overall fold observed in DBLs from P. falciparum erythrocyte-binding antigen (EBA)-175 (ref. 4). Mapping the residues that have previously been implicated in binding highlights a fairly flat but exposed site for DARC recognition in subdomain 2 of Pkalpha-DBL; this is in sharp contrast to receptor recognition by EBA-175 (ref. 4). In Pkalpha-DBL, the residues that contact DARC and the clusters of residues under immune pressure map to opposite surfaces of the DBL, and suggest a possible mechanism for immune evasion by P. vivax. Our comparative structural analysis of Pkalpha-DBL and P. falciparum EBA-175 provides a framework for the understanding of malaria parasite DBLs, and may affect the development of new prophylactic and therapeutic strategies.

Keywords

Models, Molecular, Protein Folding, Binding Sites, Erythrocytes, Molecular Sequence Data, Plasmodium falciparum, Crystallography, X-Ray, Protein Structure, Tertiary, Structure-Activity Relationship, Animals, Humans, Plasmodium knowlesi, Amino Acid Sequence, Disulfides, Duffy Blood-Group System, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    218
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
218
Top 10%
Top 1%
Top 1%