Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Tyrosine Phosphatase-ε Activates Src and Supports the Transformed Phenotype of Neu-induced Mammary Tumor Cells

Authors: Ari Elson; Hava Gil-Henn;

Tyrosine Phosphatase-ε Activates Src and Supports the Transformed Phenotype of Neu-induced Mammary Tumor Cells

Abstract

Few tyrosine phosphatases support, rather than inhibit, survival of tumor cells. We present genetic evidence that receptor-type protein-tyrosine phosphatase (RPTP)-epsilon performs such a function, as cells from mammary epithelial tumors induced by activated Neu in mice genetically lacking RPTPepsilon appeared morphologically less transformed and exhibited reduced proliferation. We show that at the molecular level, RPTPepsilon activates Src, a known collaborator of Neu in mammary tumorigenesis. Lack of RPTPepsilon reduced Src activity and altered Src phosphorylation in tumor cells; RPTPepsilon dephosphorylated and activated Src; and Src bound a substrate-trapping mutant of RPTPepsilon. The altered morphology of tumor cells lacking RPTPepsilon was corrected by exogenous Src and exogenous RPTPepsilon or RPTPalpha; exogenous activated Src corrected also the growth rate phenotype. Together, these results suggest that the altered morphology of RPTPepsilon-deficient tumor cells is caused by reduced Src activity, caused, in turn, by lack of RPTPepsilon. Unexpectedly, the phenotype of RPTPepsilon-deficient tumor cells occurs despite expression of the related RPTPalpha, indicating that endogenous RPTPalpha does not compensate for the absence of RPTPepsilon in this case. We conclude that RPTPepsilon is a physiological activator of Src in Neu-induced mammary tumors and suggest that pharmacological inhibition of phosphatases that activate Src may be useful to augment direct pharmacological inhibition of Src.

Related Organizations
Keywords

Binding Sites, Base Sequence, Receptor, ErbB-2, Receptor-Like Protein Tyrosine Phosphatases, Class 4, Molecular Sequence Data, Mammary Neoplasms, Experimental, Receptors, Cell Surface, Enzyme Activation, Isoenzymes, Mice, Inbred C57BL, Mice, Phenotype, src-Family Kinases, Animals, Female, Phosphorylation, Protein Tyrosine Phosphatases, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
gold