Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Identification of novel Smad binding proteins

Authors: Dennis R, Warner; Emily A, Roberts; Robert M, Greene; M Michele, Pisano;
Abstract

The TGFbetas, a family of secreted polypeptide growth factors, are critical regulators of mammalian orofacial development. The importance of the TGFbetas in development of the orofacial region in mice is underscored by the resulting orofacial clefts in mice with targeted deletion of either TGFbeta2 or TGFbeta3 and most recently, a conditional knockout of the type II TGFbeta receptor (TbetaRII) gene. The TGFbetas signal via binding to specific cell surface receptors which, in turn, activates translocation of the nucleocytoplasmic Smad transcriptional regulators. Smads 2 and 3 are TGFbeta-specific transcriptional regulators that bind DNA through their conserved MH1 domains and activate or inhibit transcription of TGFbeta-responsive genes through their MH2 domains. To search for novel Smad binding proteins expressed in developing murine orofacial tissue, a yeast two-hybrid assay was utilized to screen a cDNA expression library constructed from fetal murine orofacial tissue. Several novel Smad binding proteins were identified. These include a putative zinc finger protein (ZNF198), peroxisomal biogenesis factor 6 (Pex6), eucaryotic translation initiation factor 4E nuclear import factor 1 (4-ET), and splicing factor 3b subunit 2 (SF3b2). Results of the yeast two-hybrid screen were verified by GST pull-down assays which confirmed the interaction of these proteins with the MH2 domain of Smad 3, and also indicated interaction of these proteins with additional Smad family members. The identification of these proteins as Smad binding partners allows exploration of new mechanisms whereby TGFbeta signaling may be regulated, and reveals additional potential interactions with other signaling pathways.

Related Organizations
Keywords

Male, Mouth, Transcription, Genetic, Smad Proteins, DNA-Binding Proteins, Transforming Growth Factor beta, Face, Two-Hybrid System Techniques, Trans-Activators, Animals, Smad3 Protein, Carrier Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%