Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Cell Internat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Cell International
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Cell International
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Cell International
Article . 2021
Data sources: DOAJ
versions View all 4 versions

Quantitative phosphoproteomic analysis reveals chemoresistance-related proteins and signaling pathways induced by rhIL-6 in human osteosarcoma cells

Authors: Rui Zhang; Huan Wang; Erliang Li; Yonghong Wu; Yanhua Wen; Chenyu Li; Bo Liao; +1 Authors

Quantitative phosphoproteomic analysis reveals chemoresistance-related proteins and signaling pathways induced by rhIL-6 in human osteosarcoma cells

Abstract

Abstract Background IL-6 plays a pivotal role in resistance to chemotherapeutics, including lobaplatin. However, the underlying mechanisms are still unclear. This study was to investigate the changes in phosphoproteins and their related signaling pathways in the process of IL-6-induced chemoresistance to lobaplain in osteosarcoma cells. Methods We performed a quantitative phosphoproteomic analysis of the response of SaOS-2 osteosarcoma cells to recombinant human IL-6 (rhIL-6) intervention prior to lobaplatin treatment. The cells were divided into the control group (Con), the lobaplatin group (Lob), and the rhIL-6-and-lobaplatin group (IL-6). Three biological replicates of each group were included. The differentially expressed phosphoproteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Netphos 3.1 was used for the prediction of kinases, and STRING was used for the visualization of protein–protein interactions. The conserved motifs surrounding the phosphorylated residues were analyzed using the motif-x algorithm. Western blot analysis was performed to verify the differential expression of p-FLNC, its predicted kinase and the related signaling pathway. The results of the bioinformatic analysis were validated by immunohistochemical staining of clinical specimens. Results In total, 3373 proteins and 12,183 peptides, including 3232 phosphorylated proteins and 11,358 phosphorylated peptides, were identified and quantified. Twenty-three significantly differentially expressed phosphoproteins were identified in the comparison between the IL-6 and Lob groups, and p-FLNC ranked second among these phosphoproteins. GO and KEGG analyses revealed the pivotal role of mitogen-activated protein kinase signaling in drug resistance induced by rhIL-6. Four motifs, namely, -SPxxK-, -RxxSP-, -SP-, and -SPK-, demonstrated higher expression in the IL-6 group than in the Lob group. The western blot analysis results verified the higher expression of p-FLNC, AKT1, and p-ERK and the lower expression of p-JNK in the IL-6 group than in the Con and Lob groups. The immunohistochemical staining results showed that p-FLNC, AKT1 and p-ERK1/2 were highly expressed in platinum-resistant clinical specimens but weakly expressed in platinum-sensitive specimens, and platinum-resistant osteosarcoma specimens demonstrated weak expression of p-JNK. Conclusions This phosphoproteomic study is the first to reveal the signature associated with rhIL-6 intervention before lobaplatin treatment in human osteosarcoma cells. p-FLNC, AKT1, and MAPK signaling contributes to resistance to lobaplatin in osteosarcoma SaOS-2 cells and may represent molecular targets to overcome osteosarcoma chemoresistance.

Related Organizations
Keywords

Proteomics, Osteosarcoma, QH573-671, rhIL-6 intervention, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, Phosphorylation, Lobaplatin, Cytology, Primary Research, Chemoresistance, RC254-282

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold