Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The genetic locus At1g73660 encodes a putative MAPKKK and negatively regulates salt tolerance in Arabidopsis

Authors: Lei, Gao; Cheng-Bin, Xiang;

The genetic locus At1g73660 encodes a putative MAPKKK and negatively regulates salt tolerance in Arabidopsis

Abstract

An Arabidopsis mutant with improved salt tolerant germination was isolated from a T-DNA insertion library and designated as AT6. This mutant also exhibited improved salt tolerance phenotype in later developmental stages. But no apparent difference was observed in response to ABA, GA or ethylene during germination between the mutant and the wildtype. The T-DNA was inserted in the At1g73660 locus that coded for a putative MAPKKK. Genetic and multiple mutant allele analyses confirmed that the knockout of this gene resulted in improved salt tolerance phenotype and provided strong evidence that the genetic locus At1g73660 negatively regulated salt tolerance in Arabidopsis. The At1g73660 was down regulated in response to salt stress in the mutants, which is consistent with its role as a negative regulator. It is therefore hypothesized that the AT1g73660 may serve as one of the off-switches of stress responses that are required for unstressed conditions.

Related Organizations
Keywords

Genetic Markers, Arabidopsis Proteins, MAP Kinase Signaling System, Reverse Transcriptase Polymerase Chain Reaction, Arabidopsis, Germination, Sodium Chloride, MAP Kinase Kinase Kinases, Mutagenesis, Insertional, Mutation, RNA, Messenger, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%