The In Silico Prediction of Hotspot Residues that Contribute to the Structural Stability of Subunit Interfaces of a Picornavirus Capsid
The In Silico Prediction of Hotspot Residues that Contribute to the Structural Stability of Subunit Interfaces of a Picornavirus Capsid
The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid. Significantly, many of the predicted hotspot residues were found to be conserved in representative viruses from different genera, suggesting that the molecular determinants of capsid assembly are conserved across the family. The analysis presented here can be applied to any icosahedral structure and provides a platform for in vitro mutagenesis studies to further investigate the significance of these hotspots in critical stages of the virus life cycle with a view to identify potential targets for antiviral drug design.
- Rhodes University
- SEALS Consortium South Africa
- Rhodes University
- Rhodes University South Africa
- Rhodes University
protomer, assembly, Models, Molecular, 570, Picornaviridae, Microbiology, 630, Article, axis of symmetry, pentamer, Capsid, Theilovirus, capsid, Computer Simulation, Amino Acid Sequence, Protein Interaction Maps, Conserved Sequence, Binding Sites, Virus Assembly, cardiovirus, QR1-502, Protein Subunits, protein–protein interaction, Capsid Proteins, hotspot
protomer, assembly, Models, Molecular, 570, Picornaviridae, Microbiology, 630, Article, axis of symmetry, pentamer, Capsid, Theilovirus, capsid, Computer Simulation, Amino Acid Sequence, Protein Interaction Maps, Conserved Sequence, Binding Sites, Virus Assembly, cardiovirus, QR1-502, Protein Subunits, protein–protein interaction, Capsid Proteins, hotspot
13 Research products, page 1 of 2
- 1989IsRelatedTo
- 1996IsRelatedTo
- 2012IsRelatedTo
- 2000IsRelatedTo
- 2008IsRelatedTo
- 1989IsRelatedTo
- 1999IsRelatedTo
- 2009IsRelatedTo
- 2015IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
