Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Tumor Necrosis Factor α Modulates Airway Smooth Muscle Function via the Autocrine Action of Interferon β

Authors: Tliba, Omar; Tliba, S.; Da Huang, C.; Hoffman, R.K.; DeLong, P.; Panettieri, Reynold A. Jr.; Amrani, Yassine;

Tumor Necrosis Factor α Modulates Airway Smooth Muscle Function via the Autocrine Action of Interferon β

Abstract

Current evidence suggests that tumor necrosis factor alpha (TNFalpha) and the family of interferons (IFNs) synergistically regulate many cellular responses that are believed to be critical in chronic inflammatory diseases, although the underlying mechanisms of such interaction are complex, cell-specific, and not completely understood. In this study, TNFalpha in a time-dependent manner activated both janus tyrosine kinase 1 and Tyk2 tyrosine kinase and increased the nuclear translocation of interferon-regulatory factor-1, STAT1, and STAT2 in human airway smooth muscle cells. In cells transfected with a luciferase reporter, TNFalpha stimulated gamma-activated site-dependent gene transcription in a time- and concentration-dependent manner. Using neutralizing antibodies to IFNbeta and TNFalpha receptor 1, we show that TNFalpha-induced secretion of IFNbeta mediated gamma-activated site-dependent gene expression via activation of TNFalpha receptor 1. In addition, neutralizing antibody to IFNbeta also completely abrogated the activation of interferon stimulation response element-dependent gene transcription induced by TNFalpha. Secreted IFNbeta acted as a negative regulator of TNFalpha-induced interleukin-6 expression, while IFNbeta augmented TNFalpha-induced RANTES (regulated on activation normal T cell expressed and secreted) secretion but had little effect on TNFalpha-induced intercellular adhesion molecule-1 expression. Furthermore TNFalpha, a modest airway smooth muscle mitogen, markedly induced DNA synthesis when cells were treated with neutralizing anti-IFNbeta. Together these data show that TNFalpha, via the autocrine action of IFNbeta, differentially regulates the expression of proinflammatory genes and DNA synthesis.

Related Organizations
Keywords

Cell Nucleus, Inflammation, Time Factors, Dose-Response Relationship, Drug, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Immunoblotting, Active Transport, Cell Nucleus, Enzyme-Linked Immunosorbent Assay, Muscle, Smooth, DNA, Interferon-beta, Flow Cytometry, Immunohistochemistry, Trachea, Humans, Phosphorylation, Chemokine CCL5, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
gold