Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Differential suppressive effect of promyelocytic leukemia protein on the replication of different subtypes/strains of influenza A virus

Authors: Gefei Wang; Yanxuan Xu; Kangsheng Li; Wei-Zhong Li; Dangui Zhang; Xiaoxuan Chen; Jun Zeng; +1 Authors

Differential suppressive effect of promyelocytic leukemia protein on the replication of different subtypes/strains of influenza A virus

Abstract

Promyelocytic leukemia protein (PML) plays an important role in the defense against a number of viruses, including influenza A virus. However, the sensitivity of influenza A virus subtypes/strains to PML is unknown. We investigated the role of PML in the replication of different influenza A virus subtypes/strains using pan-PML knock-down A549 cells and PML-VI-overexpressed MDCK cells. We found that (i) depletion of pan-PML by siRNA rendered A549 cells more susceptible to influenza A virus strains PR8(H1N1) and ST364(H3N2), but not to strains ST1233(H1N1), Qa199(H9N2) and Ph2246(H9N2); (ii) overexpression of PML-VI in MDCK cells conferred potent resistance to PR8(H1N1) infection, while lacked inhibitory activity to ST1233(H1N1), ST364(H3N2), Qa199(H9N2) and Ph2246(H9N2). Our results suggest that the antiviral effect of PML on influenza A viruses is viral subtype/strain specific.

Related Organizations
Keywords

Influenza A Virus, H3N2 Subtype, Tumor Suppressor Proteins, Nuclear Proteins, Promyelocytic Leukemia Protein, Virus Replication, Dogs, Influenza A Virus, H1N1 Subtype, Cell Line, Tumor, Gene Knockdown Techniques, Influenza A Virus, H9N2 Subtype, Animals, Humans, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%