Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Plant Path...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant Pathology
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant Pathology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
Data sources: PubMed Central
versions View all 3 versions

A MYST family histone acetyltransferase, MoSAS3, is required for development and pathogenicity in the rice blast fungus

Authors: Akanksha Dubey; Jongjune Lee; Seomun Kwon; Yong‐Hwan Lee; Junhyun Jeon;

A MYST family histone acetyltransferase, MoSAS3, is required for development and pathogenicity in the rice blast fungus

Abstract

Summary Histone acetylation has been established as a principal epigenetic regulatory mechanism in eukaryotes. Sas3, a histone acetyltransferase belonging to the largest family of acetyltransferase, MYST, is the catalytic subunit of a conserved histone acetyltransferase complex. To date, the functions of Sas3 and its orthologues have been extensively studied in yeast, humans and flies in relation to global acetylation and transcriptional regulation. However, its precise impact on development and pathogenicity in fungal plant pathogens has yet to be elucidated. Considering the importance of Sas3 in H3K14 acetylation, here we investigate the roles of its orthologue in the rice blast fungus, Magnaporthe oryzae ( Pyricularia oryzae ). Unlike a previously reported Sas3 deletion in yeast, which led to no remarkable phenotypic changes, we found that MoSAS3 deletion alone had a profound effect on fungal growth and development, including asexual reproduction, germination and appressorium formation in M. oryzae . Such defects in pre‐penetration development resulted in complete loss of pathogenicity in the deletion mutant. Furthermore, genetic analysis of MoSAS3 and MoGCN5 encoding a Gcn5‐related N ‐acetyltransferase family histone acetyltransferase suggested that two conserved components of histone acetylation are integrated differently into epigenetic regulatory mechanisms in the yeast and a filamentous fungus. RNA‐seq analysis of Δ Mosas3 showed two general trends: many DNA repair and DNA damage response genes are up‐regulated, while carbon and nitrogen metabolism genes are down‐regulated in Δ Mosas3 . Our work demonstrates the importance of MYST family histone acetyltransferase as a developmental regulator and illuminates a degree of functional variation in conserved catalytic subunits among different fungal species.

Keywords

Hyphae, Epistasis, Genetic, Oryza, Original Articles, Spores, Fungal, Fungal Proteins, Magnaporthe, Gene Ontology, Protein Domains, Gene Expression Regulation, Fungal, Reproduction, Asexual, Gene Deletion, Histone Acetyltransferases, Plant Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Green
gold