Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90α autocrine signaling to promote keratinocyte migration

Authors: Woodley, David T.; Fan, Jianhua; Cheng, Chieh-Fang; Li, Yong; Chen, Mei; Bu, Guojun; Li, Wei;

Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90α autocrine signaling to promote keratinocyte migration

Abstract

Hypoxia is a microenvironmental stress in many pathological conditions, including wound healing and tumor invasion. Under hypoxia, the cells are forced to adapt alternative and self-supporting mechanisms. Understanding these mechanisms may lead to new insights into human disorders. We report here a novel autocrine signaling mechanism by which hypoxia promotes human keratinocyte (HK) migration. First, hypoxia triggers HKs to secrete heat shock protein 90-alpha (HSP90α) via a HIF1-dependent pathway. The secreted HSP90α in turn promotes migration, but not proliferation, of the cells. Disruption of the secretion or extracellular function of HSP90α blocked hypoxia-stimulated HK migration. The ubiquitously expressed surface receptor, LRP1 (LDL-receptor-related protein 1), mediates the HSP90α signaling. Inhibition of LRP1 binding to extracellular HSP90α by neutralizing antibodies or genetic silencing of the LRP1 receptor by RNAi completely nullified hypoxia-driven HK migration. Finally, re-introducing a RNAi-resistant LRP1 cDNA into LRP1-downregulated HKs rescued the motogenic response of the cells to hypoxia. We propose that the hypoxia-HSP90α-LRP1 autocrine loop provides previously unrecognized therapeutic targets for human disorders such as chronic wounds and cancer invasion.

Keywords

Keratinocytes, LRP1, Cell motility, Hypoxia-Inducible Factor 1, alpha Subunit, Transfection, Antibodies, Cell Hypoxia, Autocrine Communication, Cell Movement, HSP90α, Mutation, Humans, RNA Interference, HSP90 Heat-Shock Proteins, RNA, Small Interfering, Hypoxia, Cells, Cultured, Low Density Lipoprotein Receptor-Related Protein-1, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%
bronze