Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Structura...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Structural and Functional Genomics
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Crystal structure of mouse RhoA:GTPγS complex in a centered lattice

Authors: Jobichen, C.; Pal, K.; Swaminathan, K.;

Crystal structure of mouse RhoA:GTPγS complex in a centered lattice

Abstract

RhoA, a member of the Rho sub-family of small GTPases, plays a significant signaling role in cell morphogenesis, migration, neuronal development, cell division and adhesion. So far, 4 structures of RhoA:GDP/GTP analogs and 14 structures of RhoA in complex with other proteins have been reported. All RhoA:GDP/GTP analog complexes have been crystallized in primitive lattices and RhoA is monomeric. This is the first time a RhoA:GTP analog complex has been crystallized as a dimer in a centered lattice. The present structure reveals structural differences in the switch-I (residues 28-42) and switch-II (residues 61-66) regions, which play important roles in interactions with downstream targets to transduce signals, when compared to the previously reported structures.

Keywords

rho GTP-Binding Proteins, Molecular Sequence Data, Small GTPases, Crystallography, X-Ray, Guanosine Diphosphate, Protein Structure, Secondary, GTP Phosphohydrolases, Mice, Protein Interaction Mapping, Animals, Amino Acid Sequence, Binding Sites, GTPγS, Crystal structure, RhoA, 540, Enzyme Activation, Dimer, Guanosine 5'-O-(3-Thiotriphosphate), Multiprotein Complexes, rhoA GTP-Binding Protein, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average