Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1991 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Disulfide pairing of the recombinant kringle-2 domain of tissue plasminogen activator produced in Escherichia coli

Authors: Nils U. Bang; T. Hassell; S R Jaskunas; Chris J. Vlahos; O.G. Wilhelm;

Disulfide pairing of the recombinant kringle-2 domain of tissue plasminogen activator produced in Escherichia coli

Abstract

The kringle-2 domain of tissue plasminogen activator, cloned and expressed in Escherichia coli (Wilhelm, O.G., Jaskunas, S.R., Vlahos, C.J., and Bang, N.U. (1990) J. Biol. Chem. 265, 14606-14611), was internally radiolabeled using [35S]methionine-cysteine. Following refolding and isolation, the labeled polypeptide was further purified by reverse-phase high performance liquid chromatography. The purified kringle-2 domain was digested with thermolysin, and the resulting peptides were purified by high performance liquid chromatography. Five major peptides containing 35S were obtained. Amino acid sequence analysis showed that these peptides represented various cleavage products containing one or more of the following disulfides: Cys180-Cys261, Cys201-Cys243, Cys232-Cys256 (sequence numbering based on Pennica et al. (Pennica, D., Holmes, W.E., Kohr, W.J., Hakins, R.N., Vehar, G. A., Ward, C.A., Bennett, W.F., Yelverton E., Seeburg, P.H., Heynecker, H.L., Goeddel, E.V., and Collen, D. (1983) Nature 301, 214-221)). These results confirm that the refolding methodology used produced kringle-2 with the predicted disulfide linkage and, thus, yielded material suitable for structural and functional studies.

Keywords

Molecular Sequence Data, Thermolysin, Gene Expression Regulation, Bacterial, Peptide Mapping, Peptide Fragments, Recombinant Proteins, Tissue Plasminogen Activator, Escherichia coli, Amino Acid Sequence, Disulfides, Chromatography, High Pressure Liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
gold