Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1999 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Gain-of-function Polymorphism in a G-protein Coupling Domain of the Human β1-Adrenergic Receptor

Authors: D A, Mason; J D, Moore; S A, Green; S B, Liggett;

A Gain-of-function Polymorphism in a G-protein Coupling Domain of the Human β1-Adrenergic Receptor

Abstract

The beta1-adrenergic receptor (beta1AR) is a key cell surface signaling protein expressed in the heart and other organs that mediates the actions of catecholamines of the sympathetic nervous system. A polymorphism in the intracellular cytoplasmic tail near the seventh transmembrane-spanning segment of the human beta1AR has been identified in a cohort of normal individuals. At amino acid position 389, Gly or Arg can be found (allele frequencies 0.26 and 0. 74, respectively), the former previously considered as the human wild-type beta1AR. Using site-directed mutagenesis to mimic the two variants, CHW-1102 cells were permanently transfected to express the Gly-389 and Arg-389 receptors. In functional studies with matched expression, the Arg-389 receptors had slightly higher basal levels of adenylyl cyclase activities (10.7 +/- 1.2 versus 6.1 +/- 0.4 pmol/min/mg). However, maximal isoproterenol-stimulated levels were markedly higher for the Arg-389 as compared to the Gly-389 receptor (63.3 +/- 6.1 versus 20.9 +/- 2.0 pmol/min/mg). Agonist-promoted [35S]guanosine 5'-O-(thiotriphosphate) binding was also increased with the Arg-389 receptor consistent with enhanced coupling to Gs and increased adenylyl cyclase activation. In agonist competition studies carried out in the absence of guanosine 5'-(beta, gamma-imido)triphosphate, high affinity binding could not be resolved with the Gly-389 receptor, whereas Arg-389 displayed an accumulation of the agonist high affinity receptor complex (RH = 26%). Taken together, these data indicate that this polymorphic variation of the human beta1AR results in alterations of receptor-Gs interaction with functional signal transduction consequences, consistent with its localization in a putative G-protein binding domain. The genetic variation of beta1AR at this locus may be the basis of interindividual differences in pathophysiologic characteristics or in the response to therapeutic betaAR agonists and antagonists in cardiovascular and other diseases.

Keywords

Guanylyl Imidodiphosphate, Polymorphism, Genetic, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Glycine, DNA, Adrenergic beta-Agonists, Arginine, Enzyme Activation, Amino Acid Substitution, GTP-Binding Proteins, COS Cells, Mutagenesis, Site-Directed, Animals, Humans, Amino Acid Sequence, Receptors, Adrenergic, beta-1, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    479
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
479
Top 1%
Top 1%
Top 1%
gold