Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney & Blood P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Roles of Paraoxonase and Oxidative Stress in Adolescents with Uraemic, Essential or Obesity-Induced Hypertension

Authors: Akos, Baráth; Ilona, Németh; Eszter, Karg; Emoke, Endreffy; Csaba, Bereczki; Balázs, Gellén; Ibolya, Haszon; +1 Authors

Roles of Paraoxonase and Oxidative Stress in Adolescents with Uraemic, Essential or Obesity-Induced Hypertension

Abstract

<i>Background/Aims:</i> Paraoxonase 1 (PON1) is associated with high-density lipoproteins in the plasma, and is capable of hydrolysing oxidized lipids and preventing the oxidation of low-density lipoproteins. Oxidative stress and the PON1 (activity and Q192R polymorphism) were analysed in adolescent patients with essential (n = 49) or obesity-induced hypertension (n = 79), uraemic patients (n = 20), and also in obese normotensive patients (n = 60) and age-matched controls (n = 57). <i>Methods:</i> The PON1 activity was measured via paraoxon hydrolysis. The PON1 genotype was determined by real-time PCR. The levels of oxidized and reduced glutathione, the end-products of nitric oxide, cysteine, homocysteine and lipid peroxidation in the plasma were measured and related to the PON1 status. <i>Results:</i> There were no significant differences between the patient groups and the control group in the genotype distributions and the allele frequencies of the Q192R polymorphism. The PON activity was significantly lower (p < 0.001) in the uraemic hypertensive group than in the controls. The MDA concentration was significantly higher in the uraemic hypertensive (p < 0.001) and obese hypertensive (p < 0.05) patients. The plasma NO<sub>x</sub> concentrations were significantly lower (p < 0.001) and the ratio MDA/NO<sub>x</sub> were significantly higher in all four patient groups. The GSH levels were significantly lower in the patients with hypertension (p < 0.001) and obesity-induced hypertension (p < 0.05) than in the controls, while the GSSG level (p < 0.01) and the ratio GSSG/GSH (p < 0.05) was significantly higher in the uraemic hypertensive group. The plasma homocysteine level was significantly higher (p < 0.001) in the uraemic hypertensive patients as compared with the controls. <i>Conclusions:</i> We found no significant correlation between the biochemical parameters and neither genotypes nor enzyme activities. The PON1 status and the levels of certain biochemical parameters are independently associated with the hypertension in hypertensive and obese hypertensive patients, and the elevated levels of lipid peroxides and plasma homocysteine may contribute to the increased risk of cardiovascular complications in patients on haemodialysis.

Related Organizations
Keywords

Male, Analysis of Variance, Lipid Peroxides, Polymorphism, Genetic, Adolescent, Aryldialkylphosphatase, Glutathione, Oxidative Stress, Renal Dialysis, Hypertension, Humans, Female, Obesity, Homocysteine, Uremia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
gold