Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Isolation and Characterization of the Putative Nuclear Modifier Gene MTO1 Involved in the Pathogenesis of Deafness-associated Mitochondrial 12 S rRNA A1555G Mutation

Authors: Xiaoming, Li; Ronghua, Li; Xinhua, Lin; Min-Xin, Guan;

Isolation and Characterization of the Putative Nuclear Modifier Gene MTO1 Involved in the Pathogenesis of Deafness-associated Mitochondrial 12 S rRNA A1555G Mutation

Abstract

The human mitochondrial 12 S rRNA A1555G mutation has been found to be associated with aminoglycoside-induced and non-syndromic deafness. However, putative nuclear modifier gene(s) have been proposed to regulate the phenotypic expression of this mutation. In yeast, the mutant alleles of MTO1, encoding a mitochondrial protein, manifest respiratory-deficient phenotype only when coupled with the mitochondrial 15 S rRNA P(R)454 mutation corresponding to human A1555G mutation. This suggests that the MTO1-like modifier gene may influence the phenotypic expression of human A1555G mutation. Here we report the identification of full-length cDNA and elucidation of genomic organization of the human MTO1 homolog. Human Mto1 is an evolutionarily conserved protein that implicates a role in the mitochondrial tRNA modification. Functional conservation of this protein is supported by the observation that isolated human MTO1 cDNA can complement the respiratory deficient phenotype of yeast mto1 cells carrying P(R)454 mutation. MTO1 is ubiquitously expressed in various tissues, but with a markedly elevated expression in tissues of high metabolic rates including cochlea. These observations suggest that human MTO1 is a structural and functional homolog of yeast MTO1. Thus, it may play an important role in the pathogenesis of deafness-associated A1555G mutation in 12 S rRNA gene or mutations in tRNA genes.

Keywords

Expressed Sequence Tags, Glycerol, DNA, Complementary, Models, Genetic, Genetic Complementation Test, Molecular Sequence Data, Exons, Introns, Mitochondria, Mitochondrial Proteins, Alternative Splicing, Glucose, Phenotype, Microscopy, Fluorescence, Mutation, Humans, Amino Acid Sequence, Cloning, Molecular, Carrier Proteins, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 10%
Top 10%
Top 1%
gold