Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Lipid-regulated Docking Site on Vinculin for Protein Kinase C

Authors: Wolfgang H, Ziegler; Ulrich, Tigges; Anke, Zieseniss; Brigitte M, Jockusch;

A Lipid-regulated Docking Site on Vinculin for Protein Kinase C

Abstract

During cell spreading, binding of actin-organizing proteins to acidic phospholipids and phosphorylation are important for localization and activity of these proteins at nascent cell-matrix adhesion sites. Here, we report on a transient interaction between the lipid-dependent protein kinase Calpha and vinculin, an early component of these sites, during spreading of HeLa cells on collagen. In vitro binding of protein kinase Calpha to vinculin tail was found dependent on free calcium and acidic phospholipids but independent of a functional kinase domain. The interaction was enhanced by conditions that favor the oligomerization of vinculin. Phosphorylation by protein kinase Calpha reached 1.5 mol of phosphate/mol of vinculin tail and required the C-terminal hydrophobic hairpin, a putative phosphatidylinositol 4,5-bisphosphate-binding site. Mass spectroscopy of peptides derived from in vitro phosphorylated vinculin tail identified phosphorylation of serines 1033 and 1045. Inhibition of C-terminal phospholipid binding at the vinculin tail by mutagenesis or deletion reduced the rate of phosphorylation to < or =50%. We suggest a possible mechanism whereby phospholipid-regulated conformational changes in vinculin may lead to exposure of a docking site for protein kinase Calpha and subsequent phosphorylation of vinculin and/or vinculin interaction partners, thereby affecting the formation of cell adhesion complexes.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Dose-Response Relationship, Drug, Inositol Phosphates, Molecular Sequence Data, Lipid Metabolism, Actins, Mass Spectrometry, Isoenzymes, Cross-Linking Reagents, Mutation, Cell Adhesion, Mutagenesis, Site-Directed, Humans, Actinin, Amino Acid Sequence, Collagen, Cloning, Molecular, Phosphorylation, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
gold