Powered by OpenAIRE graph

Natriuretic peptides inhibit rat astroglial proliferation: mediation by C receptor

Authors: E R, Levin; H J, Frank;

Natriuretic peptides inhibit rat astroglial proliferation: mediation by C receptor

Abstract

The processing and secretion of atrial natriuretic peptide (ANP) from neurons and the expression of high-affinity receptors on astroglia from primary cultures of fetal rat diencephalon have recently been demonstrated. Thus natriuretic peptides may play a role in neuronal-glial signaling, but a physiological role has not been characterized. In these studies, we show that ANP and brain natriuretic peptide significantly (P less than 0.05) decrease the incorporation of [3H]thymidine into astroglia in the presence of fetal bovine serum and inhibit the proliferation of these cells in the presence or absence of serum. These effects were evident at concentrations of natriuretic peptides (10(-10) M) characteristic of the receptor Kd and were not seen in cultured bovine brain capillary endothelial cells, another brain cell expressing high-affinity receptors for the natriuretic peptides. The antiproliferative effects were potently produced by ANP-(4-23), a ring-deleted analogue of ANP-(1-28), which at the concentrations used in this study binds only to the C or low-molecular-weight natriuretic peptide receptor. Thymidine incorporation was not affected by adenosine 3',5'-cyclic monophosphate (cAMP), the inhibition of which has been proposed to mediate postbinding signaling of the C receptor. Epidermal growth factor (10(-9) M) produced an 87% increase in thymidine incorporation, which was not significantly inhibited by either form of ANP. Thus natriuretic peptides in the brain may serve as antigrowth factors for glia through binding to a receptor previously felt to function solely in peptide clearance. The inhibitory effects are not the result of inhibiting the proliferative effects of an endogenous growth factor and are cAMP independent.

Related Organizations
Keywords

Astrocytes, Natriuretic Peptide, Brain, Cyclic AMP, Animals, Cell Count, Nerve Tissue Proteins, Receptors, Cell Surface, Receptors, Atrial Natriuretic Factor, Atrial Natriuretic Factor, Cell Division, Rats, Thymidine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 1%