Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Posterior migration of the salivary gland requires an intact visceral mesoderm and integrin function

Authors: Monn Monn Myat; Deborah J. Andrew; Pamela L. Bradley; Christy A. Comeaux;

Posterior migration of the salivary gland requires an intact visceral mesoderm and integrin function

Abstract

The final overall shape of an organ and its position within the developing embryo arise as a consequence of both its intrinsic properties and its interactions with surrounding tissues. Here, we focus on the role of directed cell migration in shaping and positioning the Drosophila salivary gland. We demonstrate that the salivary gland turns and migrates along the visceral mesoderm to become properly oriented with respect to the overall embryo. We show that salivary gland posterior migration requires the activities of genes that position the visceral mesoderm precursors, such as heartless, thickveins, and tinman, but does not require a differentiated visceral mesoderm. We also demonstrate a role for integrin function in salivary gland migration. Although the mutations affecting salivary gland motility and directional migration cause defects in the final positioning of the salivary gland, most do not affect the length or diameter of the salivary gland tube. These findings suggest that salivary tube dimensions may be an intrinsic property of salivary gland cells.

Keywords

Integrins, Embryo, Nonmammalian, Integrin, Receptors, Cell Surface, ribbon, Protein Serine-Threonine Kinases, Salivary Glands, Mesoderm, Cell Movement, Morphogenesis, Animals, Drosophila Proteins, Receptor, Fibroblast Growth Factor, Type 1, Molecular Biology, Salivary gland, Embryonic Induction, Gene Expression Regulation, Developmental, Receptor Protein-Tyrosine Kinases, Visceral mesoderm, Cell Biology, Protein-Tyrosine Kinases, Receptors, Fibroblast Growth Factor, tinman, Repressor Proteins, FGFR1, Mutation, Drosophila, biniou, Integrin alpha Chains, Directed migration, DPP, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
hybrid