Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 1999
versions View all 4 versions

Reelin Is a Ligand for Lipoprotein Receptors

Authors: D'Arcangelo, Gabriella; Homayouni, Ramin; Keshvara, Lakhu; Rice, Dennis S; Sheldon, Michael; Curran, Tom;
Abstract

A signaling pathway involving the extracellular protein Reelin and the intracellular adaptor protein Disabled-1 (Dab1) controls cell positioning during mammalian brain development. Here, we demonstrate that Reelin binds directly to lipoprotein receptors, preferably the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Binding requires calcium, and it is inhibited in the presence of apoE. Furthermore, the CR-50 monoclonal antibody, which inhibits Reelin function, blocks the association of Reelin with VLDLR. After binding to VLDLR on the cell surface, Reelin is internalized into vesicles. In dissociated neurons, apoE reduces the level of Reelin-induced tyrosine phosphorylation of Dab1. These data suggest that Reelin directs neuronal migration by binding to VLDLR and ApoER2.

Related Organizations
Keywords

Extracellular Matrix Proteins, Neuroscience(all), Cell Adhesion Molecules, Neuronal, Cells, Serine Endopeptidases, Nerve Tissue Proteins, Ligands, Cell Line, Mice, Reelin Protein, Receptors, LDL, COS Cells, Animals, Humans, Calcium, Low Density Lipoprotein Receptor-Related Protein-1, Receptors, Lipoprotein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    704
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
704
Top 1%
Top 1%
Top 0.1%
hybrid