Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Epilepsy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Epilepsy Research
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

GABA and epileptogenesis: comparing gabrb3 gene-deficient mice with Angelman syndrome in man

Authors: T M, DeLorey; R W, Olsen;

GABA and epileptogenesis: comparing gabrb3 gene-deficient mice with Angelman syndrome in man

Abstract

The GABAergic system has long been implicated in epilepsy with defects in GABA neurotransmission being linked to epilepsy in both experimental animal models and human syndromes (Olsen and Avoli, 1997). However, to date no human epileptic syndrome has been directly attributed to an altered GABAergic system. The observed defects in GABA neurotransmission in human epileptic syndromes may be the indirect result of a brain besieged by seizures. The use of animal models of epilepsy has sought to address these matters. The advent of gene targeting methodologies in mice now allows for a more direct assessment of GABA's involvement in epileptogenesis. To date several genes associated with the GABAergic system have been disrupted. These include the genes for glutamic acid decarboxylase, both the 65- and 67-kDa isoforms (GAD65 and GAD67), the tissue non-specific alkaline phosphatase gene (TNAP) and genes for the GABA(A) receptor subunits alpha6, beta3, gamma2, and delta (gabra6, gabrb3, gabrg2, and gabrd respectively). Gene disruptions of either GAD67 or gabrg2 result in neonatal lethality, while others, GAD65, TNAP, and gabrb3 exhibit increased mortality and spontaneous seizures. GABA receptor expression has been found to be both regionally and developmentally regulated. Thus in addition to their obvious role in controlling excitability in adult brain, a deficit in GABAergic function during development could be expected to elicit pleiotropic neurodevelopmental abnormalities perhaps including epilepsy. The GABA(A) receptor beta3 subunit gene, gabrb3/GABRB3 (mouse/human), is of particular interest because of its expression early in development and its possible role in the neurodevelopmental disorder Angelman syndrome. Individuals with this syndrome exhibit severe mental retardation and epilepsy. Mice with the gabrb3 gene disrupted likewise exhibit electroencephalograph (EEG) abnormalities, seizures, and behavioral characteristics typically associated with Angelman syndrome. These gabrb3 gene knockout mice provide direct evidence that a reduction of a specific subunit of the GABA(A) receptor system can result in epilepsy and support a GABAergic role in the pathophysiology of Angelman syndrome.

Related Organizations
Keywords

Mice, Knockout, Epilepsy, Glutamate Decarboxylase, Receptors, GABA-A, Disease Models, Animal, Mice, Gene Expression Regulation, Animals, Humans, Angelman Syndrome, gamma-Aminobutyric Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%