Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA Repairarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA Repair
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Human DNA polymerase λ catalyzes lesion bypass across benzo[a]pyrene-derived DNA adduct during base excision repair

Authors: Lidia V, Skosareva; Natalia A, Lebedeva; Nadejda I, Rechkunova; Alexander, Kolbanovskiy; Nicholas E, Geacintov; Olga I, Lavrik;

Human DNA polymerase λ catalyzes lesion bypass across benzo[a]pyrene-derived DNA adduct during base excision repair

Abstract

The combined action of oxidative stress and genotoxic polycyclic aromatic hydrocarbons derivatives can lead to cluster-type DNA damage that includes both a modified nucleotide and a bulky lesion. As an example, we investigated the possibility of repair of an AP site located opposite a minor groove-positioned (+)-trans-BPDE-dG or a base-displaced intercalated (+)-cis-BPDE-dG adduct (BP lesion) by a BER system. Oligonucleotides with single uracil residues in certain positions were annealed with complementary oligonucleotides bearing either a cis- or trans-BP adduct. The resulting DNA duplexes contained dU either directly opposite the modified dG or shifted to adjacent 5' (-1) or 3' (+1) positions. Digestion with uracil DNA glycosylase was utilized to generate AP sites which were then hydrolyzed by APE1, and the resulting gaps were processed by DNA polymerase β (Polβ) or λ (Polλ). The AP sites in position -1 can be repaired effectively using APE1 and Polβ or Polλ. The AP sites opposite the BP lesions can be repaired using Polλ in the case of cis- but not the trans-isomeric adduct. The AP sites in position +1 are the most difficult to repair. In the case of the AP site located in position +1, the activity of Polλ does not depend on the stereoisomeric properties of the BP lesions and dCTP is the preferred inserted substrate in both cases. The capability of Polλ to introduce the correct dNTP opposite the cis-BP-dG adduct in gap filling reactions suggests that this polymerase may play a specialized role in the process of repair of these kinds of lesions.

Related Organizations
Keywords

DNA Adducts, DNA Repair, Isomerism, Hydrolysis, Benzo(a)pyrene, Biocatalysis, DNA-(Apurinic or Apyrimidinic Site) Lyase, Humans, DNA Polymerase beta, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%