Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Investiga...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2022 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Anchoring Cords: A Distinct Suprastructure in the Developing Skin

Authors: Temitope Esho; Sara F. Tufa; Birgit Kobbe; Alexander P. Wohl; Gerhard Sengle; Mats Paulsson; Douglas R. Keene; +1 Authors

Anchoring Cords: A Distinct Suprastructure in the Developing Skin

Abstract

AMACO (VWA2 protein) is a basement membrane-associated protein secreted by epithelial cells. It is strongly expressed when invagination or budding occurs during development. AMACO associates with the Fraser complex, which when mutated causes Fraser syndrome, characterized by subepidermal blistering, cryptophthalmos, and syndactyly. The core Fraser complex proteins FRAS1, FREM1, and FREM2 localize at the dermal‒epidermal junction and mediate adhesion to the underlying dermis during embryonic development. Earlier transmission electron microscopy studies of adult mouse skin showed clustered AMACO deposition below the lamina densa. In this study, we report a distinct cord-like suprastructure in the neonate dermis to which AMACO- and Fraser complex‒associated proteins contribute. We propose anchoring cords to designate the suprastructure. Anchoring cords have a diameter of 60 nm when immunolabeled, originate from the basement membrane, and extend several microns into the dermis. In normal skin, they are evident after immunogold electron microscopy and are strikingly appreciated in thicker sections. In recessive dystrophic epidermolysis bullosa skin, they are directly visible where collagen VII anchoring fibrils are ablated. Immunofluorescence and coimmunoprecipitation of skin extracts identify a direct interaction of FREM2 and AMACO.

Keywords

Mice, Extracellular Matrix Proteins, Pregnancy, Animals, Membrane Proteins, Female, Collagen, Basement Membrane, Skin, Epidermolysis Bullosa Dystrophica

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average