Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Structural and functional heterogeneity of rap1p complexes with telomeric and UASrpg-like DNA sequences

Authors: F Z, Idrissi; J B, Fernández-Larrea; B, Piña;

Structural and functional heterogeneity of rap1p complexes with telomeric and UASrpg-like DNA sequences

Abstract

Rap1p binds to a variety of related DNA sequences. We studied complexes of Rap1p and its DNA-binding domain with two of these sequences, the UASrpg sequence (5'-ACACCCATACATTT-3') and the Saccharomyces cerevisiae telomeric consensus (5'-ACACCCACACACCC-3'). When cloned in front of a minimal CYC1 promoter, the two sequences differed in their transcriptional potential. Whereas UASrpg or telomeric single binding sites activated transcription with approximately the same strength, adjacent UASrpg sequences showed higher synergistic activity and orientation-dependence than telomeric sequences. We also found different sequence requirements for Rap1p binding in vitro to both sequences, since a single base-pair that severely reduced binding of Rap1p to UASrpg sequences had very little effect on the telomeric sequence. The Rap1p binding domain distorted DNA molecules encompassing the UASrpg sequence or the telomeric-like sequence, as revealed by both KMnO4 hypersensitivity and by hydroxyl radical foot-printing analysis. We propose that Rap1p is able to form structurally and functionally different complexes, depending on the type of DNA sequence the complex is assembled from. This functional and structural heterogeneity may be responsible for the multiple functions that Rap1p binding sites appear to have in vivo.

Related Organizations
Keywords

Models, Molecular, Transcriptional Activation, Binding Sites, Saccharomyces cerevisiae Proteins, Base Sequence, Hydroxyl Radical, Protein Conformation, Molecular Sequence Data, Telomere-Binding Proteins, DNA Footprinting, Saccharomyces cerevisiae, Telomere, Shelterin Complex, DNA-Binding Proteins, Fungal Proteins, Potassium Permanganate, Nucleic Acid Conformation, DNA, Fungal, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Average