The malformed kidney: disruption of glomerular and tubular development
pmid: 10668924
The malformed kidney: disruption of glomerular and tubular development
Renal malformations are the major cause of renal failure during early childhood. They are found in approximately 100 genetic syndromes. We review the embryologic development of the kidney and its molecular control. Important new information has been derived from mutational analysis in humans and mice. We describe how mutations in nine transcription factors, 12 signaling molecules and nine gene products involved in a variety of other cellular functions disrupt renal morphogenesis. The information presented provides a template for integrating new discoveries on the molecular basis of renal development, for classifying renal malformations observed in the clinical setting, and for identifying defective genes in affected patients.
- University of Toronto Canada
- Hospital for Sick Children Canada
Mice, Kidney Tubules, Kidney Glomerulus, Animals, Humans, Kidney Diseases, Kidney
Mice, Kidney Tubules, Kidney Glomerulus, Animals, Humans, Kidney Diseases, Kidney
48 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
