Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2

Authors: Kha The Nguyen; Chang-Seok Lee; Sang-Hyeon Mun; Nhung Thimy Truong; Sang Ki Park; Cheol-Sang Hwang;

N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2

Abstract

Perilipin 2 (PLIN2) is a major lipid droplet (LD)-associated protein that regulates intracellular lipid homeostasis and LD formation. Under lipid-deprived conditions, the LD-unbound (free) form of PLIN2 is eliminated in the cytosol by an as yet unknown ubiquitin (Ub)-proteasome pathway that is associated with the N-terminal or near N-terminal residues of the protein. Here, using HeLa, HEK293T, and HepG2 human cell lines, cycloheximide chase, in vivo ubiquitylation, split-Ub yeast two-hybrid, and chemical cross-linking-based reciprocal co-immunoprecipitation assays, we found that TEB4 (MARCH6), an E3 Ub ligase and recognition component of the Ac/N-end rule pathway, directly targets the N-terminal acetyl moiety of Nα-terminally acetylated PLIN2 for its polyubiquitylation and degradation by the 26S proteasome. We also show that the TEB4-mediated Ac/N-end rule pathway reduces intracellular LD accumulation by degrading PLIN2. Collectively, these findings identify PLIN2 as a substrate of the Ac/N-end rule pathway and indicate a previously unappreciated role of the Ac/N-end rule pathway in LD metabolism.

Related Organizations
Keywords

proteolysis, Proteasome Endopeptidase Complex, Ubiquitin-Protein Ligases, lipid droplet, perilipin 2, N-end rule, SPLIT-UBIQUITIN, Ac, Perilipin-2, UBIQUITIN LIGASE, CELLULAR-PROTEINS, Protein Domains, ubiquitin, QUALITY, Humans, METHIONINE, N-terminal acetylation, Ubiquitination, Membrane Proteins, Acetylation, PERILIPIN, Hep G2 Cells, Lipid Droplets, INSIGHTS, ACETYLTRANSFERASE, proteasome, HEK293 Cells, E3 ubiquitin ligase, DIFFERENTIATION-RELATED PROTEIN, Proteolysis, metabolism, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%
gold