Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Transcriptional repression at a distance through exclusion of activator binding in vivo

Authors: M, Shimizu; W, Li; H, Shindo; A P, Mitchell;

Transcriptional repression at a distance through exclusion of activator binding in vivo

Abstract

The yeast repressor Rme1p acts from distant binding sites to block transcription of the chromosomal IME1 gene. Rme1p can also repress the heterologous CYC1 promoter when Rme1p binding sites are placed 250–300 bp upstream of CYC1 transcriptional activator binding sites (UAS1 and UAS2). Here, in vivo footprinting studies indicate that Rme1p acts over this distance by preventing the binding of the CYC1 transcriptional activators to UAS1 and UAS2. Inhibition of activator binding by Rme1p has the same genetic requirements as repression: both depend upon sequences flanking the Rme1p binding sites and upon Rgr1p and Sin4p, two subunits of the RNA polymerase II-associated Mediator complex that are required for normal nucleosome density. Thus Rme1p may alter chromatin to prevent binding of transcriptional activators to distant DNA sequences.

Keywords

Saccharomyces cerevisiae Proteins, Transcription, Genetic, Carbon-Oxygen Lyases, DNA Footprinting, Cytochromes c, Nuclear Proteins, Cytochrome c Group, Fungal Proteins, Repressor Proteins, CCAAT-Binding Factor, Gene Expression Regulation, Fungal, Yeasts, Mutation, DNA-(Apurinic or Apyrimidinic Site) Lyase, Trans-Activators, DNA, Fungal, Promoter Regions, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
bronze