Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Imaging an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Imaging and Biology
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Targeting Phosphatidylethanolamine with Fluorine-18 Labeled Small Molecule Probe for Apoptosis Imaging

Authors: Gongjun Yuan; Shaoyu Liu; Hui Ma; Shu Su; Fuhua Wen; Xiaolan Tang; Zhanwen Zhang; +5 Authors

Targeting Phosphatidylethanolamine with Fluorine-18 Labeled Small Molecule Probe for Apoptosis Imaging

Abstract

Externalization of phosphatidylethanolamine (PE) in dying cells makes the phospholipid an attractive target for apoptosis imaging. However, no ideal PE-targeted positron emission tomography (PET) radiotracer was developed. The goal of the study was to develop a novel PE-targeted radiopharmaceutical to imaging apoptosis.In this study, we have radiolabeled PE-binding polypeptide duramycin with fluorine-18 for PET imaging of apoptosis. Al[18F]F-NOTA-PEG3-duramycin was synthesized via chelation reaction of NOTA-PEG3-duramycin with Al[18F]F. PE-binding capacity of Al[18F]F-NOTA-PEG3-duramycin was determined in a competitive radiometric PE-binding assay. The pharmacokinetic profile was evaluated in Kunming mice. The apoptosis imaging capacity of Al[18F]F-NOTA-PEG3-duramycin was evaluated using in vitro cell uptake assay with camptothecin-treated Jurkat cells, along with in vivo PET imaging using erlotinib-treated nude mice.The total synthesis procedure lasted for 30 min, with a decay-uncorrected radiochemical yield of 21.3 ± 2.6 % (n = 10). Compared with the control cells, the binding of Al[18F]F-NOTA-PEG3-duramycin with camptothecin-induced apoptotic cells resulted in a tripling increase. A competitive radiometric PE-binding assay strongly confirmed the binding of Al[18F]F-NOTA-PEG3-duramycin to PE. The biodistribution study showed rapid blood clearance, prominent kidney retention, and low liver uptake. In the in vivo PET/CT imaging, Al[18F]F-NOTA-PEG3-duramycin demonstrated 2-fold increase in erlotinib-treated HCC827 tumors in nude mice.Considering the facile preparation and improved biological properties, Al[18F]F-NOTA-PEG3-duramycin seems to be a promising PET tracer candidate for imaging apoptosis in the monitoring of cancer treatment.

Related Organizations
Keywords

Fluorine Radioisotopes, Mice, Inbred BALB C, Staining and Labeling, Phosphatidylethanolamines, Mice, Nude, Apoptosis, Small Molecule Libraries, Bacteriocins, Cell Line, Tumor, Molecular Probes, Positron Emission Tomography Computed Tomography, Organometallic Compounds, Animals, Humans, Camptothecin, Tissue Distribution, Peptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research