Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The FASEB Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions

Gtr1‐Gtr2, Ego1‐Ego3 and Vam6‐independent cytoplasmic Gln3 sequestration in conditions of nitrogen excess (609.17)

Authors: Terrance Cooper; Jennifer Tate; Rajendra Rai; Isabelle Georis; Evelyne Dubois;

Gtr1‐Gtr2, Ego1‐Ego3 and Vam6‐independent cytoplasmic Gln3 sequestration in conditions of nitrogen excess (609.17)

Abstract

The Gtr1/2, Ego1/3 complexes and Vam6 have been reported to be required for TorC1 kinase activation. In turn, activated TorC1 is accepted to be required for cytoplasmic Gln3 sequestration based on the observations that: (i) a Tor1‐Gln3 interaction is required for high level cytoplasmic Gln3 sequestration in nitrogen excess and (ii) rapamycin treatment elicits cytoplasmic to nuclear Gln3 relocation. These correlations lead to the a priori prediction that Gtr1/2, Ego1/3 and Vam6 should also be similarly required for downstream cytoplasmic Gln3 sequestration when cells are cultured in excess nitrogen. To test this hypothesis, we individually deleted the genes encoding each of the above proteins and determined whether the Gtr‐Ego complexes were required for cytoplasmic Gln3 sequestration in nitrogen rich medium. In every case cytoplasmic Gln3 sequestration occurred to the same degree in the deletion mutants as in wild type. These data indicate that either cytoplasmic Gln3 sequestration occurs in response to a TorC1‐independent regulatory pathway and/or alternatively that TorC1 activation can occur via both Gtr1/2‐Ego1/3‐Vam6‐dependent and ‐independent regulatory pathways. Grant Funding Source : NIH GM‐35642; FRFC 2.4547.11

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze